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THE AMINO ACID NEUROTRANSMITTERS; MECHANISMS OF THEIR UPTAKE
INTO SYNAPTIC VESICLES

Summary

In the present work it was shown that GABA and L-glutamate (later termed
glutamate) were taken up by a Mg2* and ATP dependent mechanism into synaptic
vesicles isolated from rat brain. The vesicular uptake differed clearly from the
synaptosomal and glial cell uptake, both with respect to Na*, Mg2* and ATP
dependency. The uptake of glutamate and GABA was inhibited by similar, but not
identical concentrations of different ionophores and by inhibitors of the Mg2’-
ATPase. The uptake of glutamate was dependent on the presence of low concentra-
tions of Cl or Br in the incubation medium, whereas the uptake of GABA was not. In
addition the uptake of glutamate was more potently inhibited by blockers of Cl
exchange than the uptake of GABA. The results indicate involvement of a Cl
exchanger in the uptake of glutamate. The regional distribution in the brain of the
uptake of GABA and glutamate was found to be different. The substrate specificity of
the uptake of GABA and glycine was similar, and the vesicular uptake of GABA and
glycine was competitively inhibited by different structure analogues. These resuits
support the concept that synaptic vesicles are important for storage of amino acids in
the nerve terminal. The mechanisms of the uptake of glutamate and GABA are
different, whereas the mechanisms of the uptake of GABA and glycine seems to be
similar.

! OBJECT OF INVESTIGATION

The object of the present stucy was to throw light on the mechanisms by which the amino acio
neurotransmitters are stored within the nerve terminal Previous studies by Naito and Ueda
(1983) have shown that glutamate is taken up by an isolated synaptic vesicle fraction. In the same
study, they did not find any uptake of y-aminobutyrate (GABA). It was therefore still an open
question at the start of this investigation if the neurotransmitter GABA was stored and released
from synaptic vesicles.

The investigation can be divided into three following parts. (1) Investigation of whether GABA is
taken up into a synaptic vesicle fraction and if the vesicle uptake could be distinguished from the
plasma membrane uptake. (2) Characterization of the in vitro uptake of GABA and comparison to
the uptake of other neurotransmitters, in particular glutamate (3) The specificity of the uptake of
the transmitter amino acids into synaptic vesicles has been investigated by studying regional
distribution and inhibition of uptake.
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The papers of the present thesis are listed below, and will be referred to in the text by their Roman
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Fykse E M and Fonnum F (1988): Uptake of y-aminobutyric acid by a synaptic vesicle fraction
isolated from rat brain, J Neurochem 50, 1237-1242.
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Fykse E M, Christensen H and Fonnum F (1989) Comparison of the properties of y-aminobutyric
acid and L-glutamate uptake into synaptic vesicles isolated from rat brain, J Neurochem 52, 946-
951

Paper IIT

Fykse E M and Fonnum F {1991} Transport of y-amincbutyrate and L-glutamate into synaptic
vesicles: Effect of different inhibitors on the vesicular uptake «f neurotransmitters and on the
Mg2* ATPase, Biochem J 276, 363~367.

Paper IV
Fykse E M and Fonnum F (1989) Regional distribution of y-aminobutyrate and L-glutamate
uptake into synaptic vesicles isolated from rat brain, Neurosci Lett 99, 300-304.

Paper V
Christensen H, Fykse E M and Fonnum F (1991) Inhibition of y-aminobutyrate and glycine
uptake into synaptic vesicles, Eur J Ph-Mo 207, 73-79.




! 2 INTRODUCTION
2.1 Historical background

The quanta: release of transmittecs and the identification of the ultrastructural and molecular
compnunds have stimulated research groups Jor several decades. In 1950 and 1952 Fatt and Katz
showed that release of acetylcholine at the frog neuromuscular junction was quantal (Fatt and
Katz, 1950; 1952). This implies that discrete packages of acetv!choline are released. The relea:e of
single packages of acetylcholine from nerve endings can be mnitored as posisynaptic miniature
endplate potentials (m.e.p.p.s.). At the same time, electronmi.. oscopy had been developed to the

-degree that synaptic structures could be visualized in detail. Ner re endings were found to contain
a large number of sm 1l vesicles with a diameter of about 50 nm (S tstrand, 1953, De Robertis and
Bennet, 1955).

Later, applicatio. of subcellular fractionation techniques permitted the isolation of nerve endings
(Gray and Whittaker, 1962). It also became possible to isolate vesicles in a highly purified
preparation (De Rohertis et al, 1963, Whittaker et al, 1963, 1964), and to show that the vesicles
contained acetylcholine. The purity of the preparation and particularly its content of the enzyme
choline acetyltra. -fcrase (ChAT) (EC 2.3.1 6) was a controversy for ceveral years (McCaman et al,
1965; Fonnum, 1967, 1968). Later studies on the electromotor nerve terminal from the electric
organ of Torpedo have contributed greatly to the development ot the vesicular field. The advantage
of the Torpedo electric organ is that it is purely cholinergic. Synaptic vesicles isolated from the
electric organ of Torpedo are larger than ves: -les isolated from other nerve terminals, (Whittaker,
1984) 90 nm irstead of 50 nm in diameter. The simplest explanation for quantal release of
transmitters would be the secretion of multimolecular packets of acetylcholine due to extrusion of
the vesicular contents into the synaptic clefl. This has been termed the vesicie hypothesis of
neurotransmitter release. The vesicle hypothesis has gained wide acceptance as a general
explanation of transmitter release (Zimmerman, 1979; Ceccarelli and Hurlbut, 1980).
Monoamines are present in high concentration in synaptic vesicles isolated from central and
peripheral neurons, and the vesicle hypothesis has alsc been confirmed for these
neurotransmitters (Smith and Winkler, 1972).

Despite the great acceptance of the vesicle hypothesis, a mechanism ui acetylcholine release from
the cytosolic pool has been suggested (Dunant, 1986). In this study it was suggested that the
transmitters stored in vesicles constitute a reserve pool. A protein termed mediatophore has been
isolated from the plasma membrane of Torpedo electric organ synaptosomes. After insertion into
artificial liposomes the mediatophcre has been shown to mediate Ca2* dependent release of
acetylcholine (Israel et al, 1986). Recently, a protein subunit of the mediatophore has been
identified as a component of the synaptic vesicle proton pumping ATPase (Pirman et al, 1990).

2.2 Structure and function of synaptic vesicles

. Synaptic vesicles have been isolated both from the electric organ of Torpedo, mammalian brain

' and spinal cord, and from the myenteric plexus of the guinea pig ileum. A great deal of the

' knowledge concerning the structure and function of synaptic vesicles h.as appeared from studies of

| vesicles from the electric organ of Torpedo. The more limited data concerning the mammalian

brain synaptic vesicles may partly be due to the heterogeneity of the brain synaptic vesicle

. fractions, which probably consist of subpopulations of vesicles, each specific for different neuro-
transmitters.

Cholinergic synaptic vesicles from the electric organ of Torpedo are not a homogeneous pool of
vesicles of the same size and density. Three subpopulations of cholinergic synaptic vesicles from
electric organ of Torpedo have been found; the VPy-, VP. and VP3-vesicles (Zimmerman and
Whittaker, 1977). The VPy-vesicles are iransported from the perikaryon to the terminal with fast
axonal transport (Kiene and Stadler, 1387; Stadler and Kiene, 1987). The VPg-vesicles have a
protein composition identical to that ¢, .he ve. icles isolated from nerve terminals, but they do not
contain acetylcholine and ATP. In the ierminal they accumulate acetylcholine and ATP and
became the VPj-vesicles. On arrival of an action potential at the nerve terminal, the vesi. les
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undergo exocytosis. After release, the vesicle are recycled (Zimmerman and Denston, 1977a;
Zimmerman and Whittaker, 1977), and then they reaccumulate acetylcholine and ATP. The poo)
of the recycling vesicles constitutes the VP,-vesicles. The VP;-subpopulation of vesic les constitute
the resting and depot pool of vesicles. The VPg-vesicles are smaller and denser than the VPy-
vesicles due to storage of a smaller amount of acetylcholine and ATP, and they are localized closer
to the nerve terminal than the VPj-vesicles (Zimmerman and Denston, 1977b; Giompress et al,
1981). The actively recycling VPs-vesicles probably contain most of the newly synthesized
acetylcholine and ATP (Zimmerman and Denston, 1977b, Zimmerman, 1978), and they are
thought to be responsible for the preferential release of the newly synthesized transmitter
(Suszkiw et al, 1978). Stimulation of the electric organ increases the proporticn of recyclinyg vesic-
les (VPa-type) in the total population of synaptic vesicles (Zimmerman and Denston, 1977a, bj

All neurons in the mammalian peripheral and central nervous system contain one or more distinct
population st vesicles. They differ in size, shape »nd clectrondensity. Evidence collected from
biochemic .! analysis of subcellular fractions, immunocytological examination and pharma-
cological vxperiments indicates that the small type of vesicles (45-55 nm) from adrenergic and
cholinergic nerve endings contains neurotransmitter and ATP (Fried et al, 1981; Zimmerman,
1982; Whittaker, 1986), but is devoid of neuropeptides. In addition to small vesicles, the choliner-
gic and noradrenergic terminals (varicosities) contain large vesicles measuring 80 to 120 nm in
diameter Analysis of particles isolated from peripheral and central nervous systemns indicate that
the large vesicles are the main storage organelles for neuropeptides (von Euler, 1963; Lundberg et
al, 1981, Floor et al, 1982, Klein et al, 1982, Fried et al, 1985, 1986) T*e physiological importance
of these peptides probably varies with the tissue and animal species since there are great
differences in numbe. and consequently in the storage capacity of 'he large vesicle population
(Klein and Thureson-Klein, 1984, Douglas et al, 1986) The large vesicles constitute about 5-10 %
of aii vesicles in the termina! (Kiein and Lagerkrantz, 1982).

Recently, new information has been gained concerning the structure and function of small
synaptic vesicles - 2 mammalian brain Mammalian brain syraptic vesicles have now been
purified sufficiently to make identification, purification and characterization of the vesicle
proteins possible. Some proteins associated with mammalian brain vesicles will be discussed
briefly. Figure 1 shows a model of a mammalian brain GABAergic synaptic vesicle.

Synapsin

Synapsin | is one of tt  2st characterized synaptic vesicle-associated proteins (for review see
Nestler and Greengard, ‘¢ 36). Synapsin ! has been found to be concentrated in nerve termr 'nals,
and under conditions of low ionic strength Synapsin I was associated with synaptic vesicles during
their isolation (Huttner et al, 1983). The protein has been purified, and represents about 6% of the
total protein present in highly purified vesicies (Huttner et ai, 1983) In structure, the protein is
~longated and highly asymmetric. It contains a tail-region and a head-region. One serine residue
can be phosphorylated at the head-region, and two at the tail-region, all b, different protein
kinases (Huttner and Greengard, 1979; Huttner et al, 1981). Phosphorylation of the tail-region has
been shown to decrease the binding of synapsin ! to the vesicles, and facilitate the release of
neurotransmitters. Phosphorylation may also alter the binding of Synapsin | to cytoskelcton
proteins {Nestler and Greengard, 1986).

Synaptophysin (p38)

Synaptophysin has been identified independently by three different groups (Bock et al, 1974; Jahn
et al, 1985; Wiedenmann and Franke, 1985). The protein is an integral membrane protein. On the
basis of analysis of the amino acid sequence it has been proposed that synaptophysin spans the
vesicle membrane four times, with the amino and carboxy terminal located on the cytoplasmic
surface (Sadhof et al, 1987) . The cytoplasmic domain binds Ca2" and synaptophysin is reported to
be the major Ca?* binding protein of synaptic vesicles (Rehm et al, 1986). The cytoplasmic carboxy
tail undergoes tyrosine phosphorylation by tyrosine kinases (Barnekow et al, 1990). The purified
synaptophysin forms a hexameric structure and a voltage dependent ion channel when
incorporated in planar lipid bilayers (Thomas et al, 1988), and it nas been suggested that this
protein might be involved in exocytosis of synaptic vesicles during neurotransmission.
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Figurel A model of a mammalian brain GABAergic synaptic vesicle

ATPase

There are three main classes of ATPases named P-, F-and V-type ATPases The plasma membrane
(P-type) operates via a phosphoenzyme intermediate (e g Na'/K'- ATPase) (Forgac and Chin,
1985) In the plasma membrane they have a major role in maintaining the ionic homeostasis of the
cell by controlled pumping of various cations across the cell membrane The eubacterial type (F-
type) is present in eubacteria, mitochondria and chloroplasts. Their main functions is to
phosphorylate ADP at the expense of 4 protonmotive force (Futai et al, 1989) The vacuolar proton
(V type) ATPase is present in a variety of intracellular membrane bound organelles, including
clathrin-coated vesicles (Forgac et al, 1983, Stone et al, 1983), endosomes (Galloway et al, 1983;
Yamasihro et al, 1983), Golgi-derived vesicles (Glickman et al, 1983, Zhang and Schneider, 1983)
and chromafTin granules. The ATPase activity of chromaffin granules was discovered about three
decades ago (Kirshner, 1962). Later evidence has clearly shown that the chromaffin granule
ATPase is a proton pump responsible for generating the protonmotive force for catecholamine
uptake (Bashford et al, 1976, Casey et al., 1976, Flatmark and Ingebretsen, 1977, Holz, 1978;
Johnson et al, 1979). Whether all the vacuolar proton pumps in a cell are identical or belong to a
family of closely related proteins, and how the mechanisms by which the activities of these pumps
are regulated, are crucial but unanswered questions. One of the subunits, a proteolipid of 16 kDa,
has been identified as a part of the proton channel (Sun et al, 1987). It has some sequence
homology to the proton channel of the mitochondrial ATPase (Mandel et al, 1988), and they are
thought Lo share a common evolutionary origin. The ATPases are often characterized on the basis
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of their sensitivity Lo inhibitors, and the vacuolar ATPase is highly sensitive 1o N-etylmaleimide
(NEM), an alkylating agent. [ 1s insensitive to inhibitors of the plasma membrane ATPase, such
as vanadate and ouabain, and inhibitors of the mitochondrial ATPases, such as oligomycin and
azide (Pedersen and Cerafoli, 1987).

The Mg2" activated H’-ATPase of synaptic vesicles generates a proton electrochemical gradient
(Stadler and Tsukita, 1984; Cidon and Sihra, 1989) The ATPase is required for uptake of
neurotransmitters into synaptic vesicles. This will be discussed in more detail in the general
discussion. Recently, it has become clear that the vesicular Mg2*-ATPase belongs to the class of
vacuolar ATPases (Maycox et al, 1988; Cidon and Sihra, 1989; Floor et al, 1990, Moriyama et al,
1990). The vacuolar H*-ATPase of chromaffin granules is a multimeric protein composed of eight
different subunits (Moriyama and Nelson, 1989; Nelson, 1991). The protein is composed of two
distinct structures; a peripheral catalytic sector and a hydrofobic membrane sector. The vesicle
H*-ATPase is shown to be immunologically related to the chromaffin granule enzyme (Cidon and
Sihra, 1989). A vanadate sensitive ATPase of the P-type has also been found and purified from the
electric organ of Torpedo (Yamagata et al, 1989; Yamagata and Parsons, 1989). The function of
this ATPase is unknown. This means that the cholinergic vesicles contain both a P-type ATPase
and a V-type ATPase A vanadate sensitive ATPase has also recently been purified from
chromafTin granule membranes (Moriyama and Nelson, 1988).

2.3 Storing of catecholamines and acetylcholine in chromaffin granules and synaptic
vesicles

Since most workers agree that evoked release of acetylcholine and catecholamines occur by
exocytosis of synaptic vesicles, the storage of neurotransmitters by vesicles 1s probably a critical
and obligatory step in normal function of the nerves. The function of chromaffin granules is to
store catecholamines in high concentration and, upon stimulation of chromafTin cells, to deliver
the catecholamines into the extracellular space. The active uptake of catecholamines is driven by
ATP hydrolysis. The activity of the vacuolar ATPase, builds up a proton electrochemical gradient
which is the driving force for the uptake (for review see Njus et ai, 1381) The accumulation of
these substrates is sensitive to reserpine. Reserpine which is an alkaloid derived from the root of
Rauwolfia serpentina competitively inhibits the uptake of catecholamines (Kirshner, 1962;
Jonasson et al, 1964). The chromaffin cells have been used as a model system for studying uptake
and release processes in brain vesicles. The uptake of catecholamines into brain vesicles has also
been found to be driven by the proton motive force generated by a H *-ATPase (Philippu and Beyer,
1973, Toll and Howard, 1978)

Progress in the study of acetylcholine storage in synaptic vesicles has been obtained by using pure
vesicles isolated from the electric organ of Torpedo. These vesicles have an active transport system
for acetylcholine (see Parsons et al, 1987). The uptake of acetylcholine is stimulated by Mg2* ions
and ATP and is inhibited by certain inhibitors of energy metabolism (Anderson et al, 1982).
Uncouplers dissipate the proton electrochemical gradient that has been generated. Thus active
uptake of acetylcholine is driven by a proton electrochemical gradient generated by the vesicular
ATPase. In contrast to the uptake of catecholamines, the uptake of acetylcholine is stimulated by
tow concentrations of HCOj3- (Koeningsberger and Parsons, 1980; Parsons and Koeningsberger,
1980). The active uptake of acetylcholine is inhibited noncompetitively by I-trans-2-(4-
phenylpiperidino)-cyclohexanol (vesamicol, formerly AH5183) (Anderson et al, 1983). Vesamicol
was originally discovered as a neuromuscular blocking agent (Marshall, 1970).

2.4 Storing of amino acids in synaptic vesicles

It is generally accepted that the amino acids GABA and L-glutamate are major neurotransmitters
in the mammalian central nervous system (Krnjevic, 1970; Fonnuni, 1984). GABA and glutamate
are quantitatively the most important neurotransmitters in the mammalian central nervous
system. Glutamate is present in at least four different pools in the brain: As transmitter in
glutamatergic terminals, as precursor for GABA in GABAergic terminals, as a metabolic




15

compenent in other neuronal structures and in glial cells. This has greatly complicated the
analysis of the releasable amino acid transmitter pool.

The use of subcellular fractionation technique to identify the different pools of glutamate has until
now not been successful. In 1989 Burger and coworkers reported that glutamate was enriched in
the vesicle fraction. Earlier, several workers have failed to do this. Burger and coworkers (1989)
used a rapid isolation procedure for isolation of synaptic vesicles based on immunoisolation. The
storage seems to be labile, requiring the preservation of an energy gradient across the vesicle
membrane. [t is shown by Carlson and Ueda (1990) that the existence of an electrochemical proton
gradient across the vesicular membrane is required in order to mairtain steady-state levels of
glutamate accumulated by a vesicle fraction in vitro, but still there is some efflux. Treatment of
the vesicles by NEM blocks some of this glutamate efflux (Carlson and Ueda, 1990). NEM also
prevents efflux of endogenvus glutamate from a vesicie fraction (Burger et al, 1989).
Morphological studies by Storm-Mathisen and coworkers (1983) led to the first visualization of
GABA and glutamate in neurons by immunocytochemistry.

So far vesicle specific transport activities have been described for the amino acids glutamate
(Paper II; Disbrow et al, 1982; Naito and Ueda, 1983, 1985; Maycox et al, 1988), GABA (Paper 1,
Hell et al, 1988; Kish et al, 1989), and glycine (Kish et al, 1989; Christensen et al, 1990) It is
apparent that all the uptake carriers are active transporters dependent upon the proton
electrochemical gradient. No specific inhibitors, such as reserpine and vesamicol in the case of
catecholamine and acetylcholine uptake, are found for the uptake of amino acids. However, the
uptake of glutamate is competitively inhibited by a peptide containing halogenated ergot
bromocriptine (Carlson et al, 1989a). The uptake of GABA and glycine is competitively inhibited
by structure analogues (Paper V). It is also reported that a nerve terminal cytosolic factor inhibits
the ATP dependent vesicular uptake of glutamate in a dose dependent manner (Lobur et al, 1990).
The endogenous factor may have a function in regulation of the transmitter pool of glutamate.

The ontogeny of the vesicular uptake of glutamate, GABA and glycine has been investigated in
brain and spinal cord. The increase in vesicular uptake activity parallels synaptogenesis (Kish et
al, 1989; Christensen and Fonnum, 1991a,b). This indicates the importance of synaptic vesicles in
amino acid neurotransmission. The ontogeny of the high affinity uptake of glutamate over plasma
membranes has been shown to increase with the time course similar to that of the vesicular
uptake. In contrast, the developmental time course of the uptake of GABA is different
(Christensen and Fonnum, 1991b). The plasma membrane uptake of GABA is found to have a
distinet maximum during the second postnatal week (Schousboe et al, 1976). Functional
reconstitution of carriers in proteoliposomes may provide insight into energetic and mechanistic
aspects of the transport cycle. The carriers for the uptake of glutamate (Maycox et al, 1988;
Carlson et al, 1989b) and GABA (Hell et al, 1990) have been reconstituted in proteoliposomes.

During the last few years, new evidence has appeared which shows that synaptic vesicles are
important for stcrage and exocytotic release of amino acids. The fact that amino acids are actively
accumulated into synaptic vesicles in vitro strongly supports the validity of the vesicle hypothesis
for amino acids.
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3 DISCUSSION OF METHODS
3.1 Purification of synaptic vesicles

The present study deals with the uptake of amino acid neurotransmitters into synaptic vesicles
isolated from rat brain. Different methods have been used for the isolation of synaptic vesicles, and
the original method described by Whittaker and coworkers (1964) has been used in the present
study. Synaptic vesicles were isolated from a crude synaptosomal fraction subjected to hypo-
osmotic lysis to release the vesicles, and the vesicles were further purified by sucrose density
gradient centrifugation. The different fractions were tested for their GABA and glutamate uptake
activity. The highest specific uptake activities were due to vesicles floating in 0.4 M sucrose, but
0.6 M sucrose also contained uptake activities. This is in agreement with the distribution of
organelles in a sucrose gradient described by Whittaker and coworkers (1964). At the interface
between 0.4 M and 0.6 M sucrose and in 0.6 M sucrose they found some synaptic vesicles, often in
clumps, microsomes and occasional myelin fragments.

Another method for isolation of synaptic vesicles was described by De Robertis et al (1963). This
method is based on osmotic shock of a crude synaptosomal fraction, followed by differential
centrifugation into three subfractions, M, M3, and M3. In subfraction M; myelin fragments and
membrane structures are accumulated The major part of the high speed centrifugation pellet Mg
consists of synaptic vesicles, but this fraction is found to be more contaminated by microsomes and
membrane structures than the one obtained by Whittaker et al (1964). M3 is the final supernatant
or soluble subfraction. A modification of this method has been applied due to the small amount of
material obtained from the different brain structures (Paper 1V). Myelin and microsomes were
separated from the synaptosomal fraction by a sucrose density gradient. This gives a vesicle
fraction less contaminated by membranes than the vesicular fraction obtained by De Robertis et al
(1963).

Further purification of synaptic vesicles has been performed by different methods These methods
will be discussed in light of the uptake function of the vesicle fractions. Naito and Ueda (1983)
isolated a vesicle fraction from bovine brain by osmotic shock of a synaptosome fraction, sucrose
gradient and immunprecipitation with anti-synapsin I, but they did not found any uptake of
GABA. Later they described an uptake of GABA into a vesicle fraction isolated from rat cerebrum.
This vesicle fraction was isolated by lysis of a crude synaptosome fraction and centrifugation in a
Percoll gradient. They obtained a GABA/glutamate uptake ratio of 0.03 (Kish et al, 1989). In
contrast, in the present work a GABA/glutamate uptake ratio of about 0.25 is found (Papers [I, {II,
IV, V). The reason for this discrepancy may be that Ueda and coworkers are destroying their
vesicles during the isolation procedure. Some neuroanatomical studies have reported that the
GABAergic and glycinergic vesicles are elliptic in shape (Bodian, 1972), which may imply that
these vesicles are more labile than the glutamate vesicles. Thus, several procedures may lead to
partly destruction of the GABA uptake activity. Isolation of synaptic vesicles have also been
performed in a Nycodenz gradient (Floor et al, 1988). In contrast to the sucrose gradient, the
osmolarity of Nycodenz and Percoll gradients can be kept constant over a wide range of densities.
Synaptic vesicles are banded in 0.4 M sucrese which is close to iso- osmolarity. Therefore, the
constant osmolarity of Nycodenz and Percoll is more important for denser organelles such as
synaptosomes. Synaptosomes are banded between 0.8 M and 1.0 M sucrose.

In Paper 111, the vesicle fraction was further purified on a controlled pore glass column. The
specific activity of the uptake of GABA and glutamate was doubled. Due to the low capacity and
low increase of the specific uptake activities, the vesicle fraction was usually not isolated by gel
filtration. The synaptic vesicles obtained by hypo-osmotic lysis of synaptosumes and sucrose
gradient centrifugation have so far shown the highest GABA/glutamate uptake ratio. The ratio of
about 0.25 is in agreement with the ratio between synaptosomal GABA and glutamate uptake
obtained by Christensen and Fonnum (1991¢}. Hell et al (1988) have isolated synaptic vesicles by
sucrose gradient and gel filtration on a controlled pore glass column from brain tissue frozen in
liquid nitrogen. In liquid nitrogen the nerve terminals are effectively broken up and direct
preparation and isolation of synaptic vesicles is possible (Whittaker et al., 1972; Tashiro and
Stadler, 1978). Hell et al (1988) obtained a ratio between the uptake of GABA and glutamate of
about 0.14. In agreement with the results of Paper III, the specific activity of the uptake of GABA
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and glutamate was doubled when the vesicle fraction was chromatographed on a controlled pore
glass column. Synaptic vesicles further purified by gel filtration after gradient centrifugation are
less contaminated by microsomes and other membrane structures, but physiological function
beyond purity of synaptic vesicles seems to be important when it comes to uptake studies.

Due to the large amount of Mg2" activated ATPase in all membranes, the vesicular ATPase was
measured in a highly purified vesicle fraction. The activity of the Mg2*- ATPase (Paper I1I) was
distributed in two peaks when synaptic vesicles isolated by sucrose gradient were further purified
on a controlled pore glass column. The activity of acetylcholine esterase (AChE) (EC 3.1.1.7), a
marker enzyme for plasma membranes, coeluted with the first of these two peaks, and most of the
uptlake activity coeluted with the second peak of Mg2*'-ATPase. A small part of the uptake
activities (less than 5 %) coeluted with the membrane fraction Most likely, some synaptic vesicles,
or aggregated vesicles coeluted with the membrane fraction.

The high affinity plasma membrane uptake of neurotransmitters is dependent on the Na™
gradient across the plasma membrane (for review see Kanner and Schuidiner, 1987; Fonnum et al,
1980). The vesicular GABA and glutamate uptake is not stimulated by Na' ions (Paper I; Naito
and Ueda, 1983). When the synaptosomal and vesicular uptake of GABA were performed under
identical conditions only the synaptosomal uptake was highly stimulated by addition of 50 mM
NaCl (almost 15 fold). A low concentration of GABA (44 uM) was used, due to the higher affinity of
the plasma membrane uptake. The uptake of GABA into synaptosomes was not reduced by
removal of ATP and Mg2* (Paper 1). Therefore, contamination in the vesicular fraction by plasma
membranes cannot be of any significance for the vesicular uptake. The present results also show
that the vesicular uptake is dependent on ATP, Mg2' and an intact electrochemical proton
gradient across the vesicle membrane (Papers I, II).

3.2 Blank values

The vesicular uptake measured could not be due to binding of substrate to membranes. The
vesicles bound to the filters during the uptake procedure were osmotically sensitive. The
inhibitory effect of the proton ionophores also indicates uptake instead of binding (Paper 11). 1.1 the
present study, the blank values have been treated in the same way as the samples, but they were
incubated at 0°C instead of 30°C. At 30°C the uptake is maximal. For the uptake of glutamate, the
blank values constitute about 10-15 % of the radioactivity retained on the filters, and for GABA
20-25 %. Most of this is, however, binding of substrate to the filters (70 %). The blank values did
not vary when different test agents were added as well. Other groups have used the activity at
30°C in the absence of ATP as blank values (Kish et al, 1989; Hell et al, 1990). In the absence of
ATP the uptake of GABA and glutamate is reduced by 80-90 % (Paper I, Naito and Ueda, 1985).
The activity measured in the absence of ATP is not necessarily due to binding, at least not in our
vesicle fraction. Endogenous ATP in the vesicle fraction, may be responsible for uptake activity in
the absence of exogenous ATP. Therefore, the blank values were incubated at 0°C, but otherwise
treated in the same way as the samples.

3.3 Kinetic conditions

The Km value for the uptake of GABA has been determined to be 5.6 mM (Paper I). Later Kish et
al. (1989) obtained nearly the same value. For glutamate uptake, the Km value has been
determined to about 1 mM (Naito and Ueda, 1985; Maycox et al., 1988). The experiments in Paper |
were performed with a low concentration of GABA (44 uM). Later the substrate concentration was
increased due to the kinetic properties of the system. It is more correct to use a low mM
concentration of the substrate than a low pmolar concentration, and specially in experiments
where kinetic conditions are studied. Ideally the substrate concentration should be of the order of
at least the Km value, but the specific radioactivity would be to low to permit uptake
measurement. As a compromise, a concentration of 1 mM was used (Papers I, III, IV, V). The
samples were also incubated for 1.5 or 3 minutes. The system is not saturated at 3 minutes,
therefore the rate of the uptake was measured.
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The uptake of GABA and glycine in brain and spinal cord vesicles have been studied, and
inhibition of the GABA uptake by glycine and vice versa is reported One may conclude from these
studies that the specificity of the uptake of GABA and glycine is similar (Paper V). This is in
contrast to the results of Kish et al (1989), who concluded that the uptake of GABA and glycine are
different. They did not find any inhibition of the uptake of GABA by glycine or vice versa. The
reason for this discrepancy may be that Kish et al (1989) used inadequate kinetic conditions. They
used a substrate concentration of 150 uM, which is far below the Km-values for the uptake
systems, and 10 minutes incubation time At 10 minutes the uptake of GABA and glycine is
saturated




4 GENERAL DiSCUSSION

In the present study I provide evidence for a Mg2* and ATP dependent in vitro uptake of GABA
into synaptic vesicles. Knowledge of the mechanisms of vesicular uptake of the inhibitory
neurotransmitters GABA and glycine and the excitatory neurotransmitter glutamate is essential
for the understanding of the transmitter function of the different amino acids. The transport
systems have been studied in detail both with regard to kinetics, inhibitors, regional distribution
and specificity. On the basis of the present investigation, this discussion will focus on the following
points: Comparison of the mechanisms of uptake of GABA and glutamate, with emphasis on the
different effects of anions (4.1). The specificity of the uptake of GABA, glycine and glutamate, and
the regional distribution of the uptake of these amino acids in the brain (4.2).

4.1 Comparison of the mechanisms of uptake of GABA and glutamate

The kinetic properties, energy demand, specificity and inorganic ion requirements of the vesicular
and granular transport processes are different from that observed in the plasma membrane and
mitochondrial membrane. One function of the neurotransmitter transport across the plasma
membrane is to terminate the overall process of synaptic transmission. The different properties of
the synaptosomal uptake and the vesicular uptake of GABA have been compared (Paper I). The
main difference is that the plasma membrane uptake is dependent on Na*, whereas the vesicular
uptake is not. The GABA and glutamate carriers in the vesicle membrane have lower affinities
than the plasma membrane carriers (Paper [, Fonnum et al, 1980; Naito and Ueda, 1985; Kish et
al, 1989). The vesicular uptake is stimulated by ATP and Mg2*, whereas the high affinity plasma
membrane uptake is not. Christensen and coworkers (1990) have shown that also a low affinity
plasma membrane uptake of glycine is stimulated by Na*. This uptake is not dependent on ATP
and Mg2*, and it is net inhibited by the proton ionophore carbonyl cyanide m-chloro
phenylhydrazone (CCCP). This clearly demonstrates the difference between the vesicular low
affinity uptake, and the high affinity and the low affinity plasma membrane uptake.

Vesicular uptake of GABA and glutamate is found to be inhibited almost to the same extent by the
proton ionophore CCCP (Paper I1). Different groups have reported different effect of the ionophore
nigericin on the uptake of glutamate (Paper 1I, Naito and Ueda, 1985; Cidon and Sihra, 1989;
Moriyama et al, 1990). Nigericin induces an exchange of H'/K* across a membrane in the
presence of K* ions. I (Paper II), in conformity with Naito and Ueda (1985), report a potent
inhibitory effect of nigericin on the uptake of glutamate in the presence of K*. In contrast, in two
other Papers no inhibitory effect of nigericin was observed (Cidon and Sihra, 1989; Moriyama et a,
1990). In the latter works a much lower concentrations of K* (4—10 mM) was used. This may
explain the discrepancy between the results.

Glutamate accumulation in vesicles is dependent on a membrane potential gradient across the
vesicle membrane (Maycox et al, 1988; Cidon and Sihra, 1989, Shioi et al, 1989; Moriyama et al,
1990). A vacuolar proton ATPase generates a membrane potential (positive inside), a proton
gradient or both. The ATPase generates a large proton gradient in the presence of a high
concentration of Cl. In the absence of permeant anions in the vesicular fraction the membrane
potential generated is maximal (Maycox et al, 1988). It has been shown that dissipation of the pH
component does not affect the glutamate uptake, and that the uptake is maximal where the
membrane potential is maximised. Therefore, the uptake is solely dependent on the electrical
gradient generated by the ATPase (Maycox et al, 1988). The positive membrane potential across
the vesicle membrane is only slightly reduced during the uptake of glutamate (Maycox et al, 1988).
Thus charge balance is largely maintained during net accumulation. At neutral pH, glutamate is
anionic, so that compensation of inward cationic fluxes or outward anionic fluxes probably is
associated with uptake. Maximal uptake of glutamate occurred at a concentration of about 4-10
mM CI (Papers II, iII; Naito and Ueda, 1985), which is in the same range as the physiological
intracellular concentration. The reduced uptake of glutamate in the absence of Cl probably
reflects a direct involvement of Cl in the process. An alternative medel involving a H*/glutamate
antiport has been postulated (Shioi and Ueda, 1990). The intravesicular Cl itself or a Cl efflux
may enhance the presumed H'/glutamate antiport. Zwitterionic glutamate molecules are
supposed to be taken up by the vesicles. Transported glutamate will dissociate and liberate H"-




20

ions inside the vesicles, thus facilitating a further influx of glutamate. As demonstrated by
Maycox et al (1988) acidification of the vesicles will inhibit the transport of glutamate. Removal of
the H*-ions by a H*/C! symport may be necessary for the glutamate uptake. The uptake of
catecholamines is shown to be maximal in the presence of both a membrane potential and a proton
gradient (Holtz, 1978; Johnson et al, 1979).

Hell et al (1990) concluded that the uptake of GABA is driven botk by the proton gradient and by
the membrane potential. The uptake of GABA is nct stimulated by low concentrations of Cl or Br
(Papers 11, 1II). This is in agreement with Kish et al (1989). In contrast, Hell et al (1990) found that
the uptake of GABA was reduced by 40% in the absence of exogenous C!. Maximal uptake of
GABA occurred in the range of 4-50 mM C! Endogenous C) in the vesicle fraction may be
responsible for the uptake of GABA in the absence of exogenous Cl, but this is not very likely. In
contrast, even 1 mM CI or Br stimulated the uptake of glutamate 3 and 4 fold, respectively. In a
synaptic vesicle fraction isolated by a controlled pore glass column (Paper III), the uptake of GABA
was not stimulated by Cl ions (results not shown). However, it is possible that the ATPase of
GABAergic vesicles uses efflux of a cation to generate a proton gradient across the vesicle
membrane. Further investigation is needed to be able to confirm this statement.

The stilbene disulfonate derivates SITS (4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid)
and DIDS (4,4'-diisothiocyano-2,2"-stilbene-disulfonic acid) are known to be blockers of anion-
exchange in erythrocytes. The site of action in erythrocytes is the protein Band 3, and the
Cl/HCOj3 exchange is inhibited (Cabantchick et al, 1978). 5-Nitro-2-(3-phenylpropylamino)-
benzoic acid (N144) is a more specific anion channel antagonist when tested in kidneys
(Wangemann et al, 1986). The uptake of glutamate is inhibited more potently by SITS, DIDS and
N144 than the uptake of GABA. This is consistent with the fact that glutamate uptake is highly
stimulated by low concentrations of CI or Br (Papers II, I1I; Naito and Ueda, 1985). In chromaffin
granules SITS inhibited the C! stimulated Mg2*ATPase activity, and the inhibition was
competitive with respect to Cl ions (Pazoles et al, 1980). SITS also inhibited accumulation of 36Cl

by chromaffin granules (Pazoles and Pollard, 1978). The stilbene disuifonate derivates are also
known to block proton transport. The proton pump activity in a subfraction of rat liver highly
enriched in uncoated endocytotic vesicles was totally inhibited by 25 uM SITS. The ICsq value was
determined to 3.5 uM (Flatmark et al, 1985). The inhibition of the proton transport by SITS did not
affect the overall Mg2*-ATPase activity of that system (Flatmark et al, 1985). The proton uptake
activity in chromaffin granules is also found to be much more sensitive to anions than the ATPase
activity (Moriyama and Nelson, 1987). SITS and N144 inhibited the vesicular Mg2*-ATPase
activity to a low extent compared to the effect on the vesicular uptake (Paper 111). The vesicular
H - ATPase belongs to the class of vacuolar enzymes (Cidon and Sihra, 1989; Floor et al, 1990), and
the Mg2'-ATPase of the glutamatergic and GABAergic vesicles are probably similar. As
mentioned earlier, the uptake of glutamate is shown to be driven by the electrical potential, which
is maximal in the absence of permeant anions (Maycox et al, 1988). It is therefore reasonable that
the more potent effect of SITS, DIDS and N144 on glutamate uptake is due to an effect on the
glutamate carrier. The uptake of GABA was not stimulated by anions, and is inhibited to a less
extent by SITS, DIDS and N144 (Paper III). This implies that no anion related site is involved in
the uptake of GABA. Recently, Maycox et al (1990) provided evidence for functional separation of
the ATPase and transmitter uptake activity. They reported that the proton pump of
bacteriorhodopsin can substitute for the endogenous proton pump of synaptic vesicles. The uptake
of glutamate was strongly reduced when the concentration of C! was reduced. Thus the glutamate
carrier seems to be dependent on Cl, and a glutamate/Cl antiport would be a reasonable
explanation. However, more evidence is needed to support this view.

4.2 Specificity and regional distribution of the uptake of GABA, glycine and glutamate

The distribution of the vesicular uptake of GABA and glutamate in different brain regions is
different (Paper IV). This is in agreement with the fact that the enzyme synthesizing GABA,
glutamate decarboxylase (EC 4.1.1.15), is localized in specific GABAergic nerve terminals
(Fonnum et al, 1970). The subcortical telencephalon, which contains among others the regions
hypothalamus, globus pallidus and substantia nigra, showed the highest vesicular uptake of
GABA (Paper 1V). These regions are known to be rich in GABAergic terminals (Ottersen and
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Storm-Mathisen, 1984; Fonnum, 1987). The cerebellar granule cells are considered to be
glutamatergic (Hackett et al, 1979), and the Purkinje cells are GABAergic neurons (Fonnum et al,
1970). Uptake of glutamate has been studied in a synaptic vesicle fraction isolated from cerebellar
mutant mice. The uptake of glutamate was reduced by 60 % in vesicles from mice lacking granule
cells, but not in vesicles from mice lacking Purkinje cells (Fischer-Bovenkerk et al, 1988). The high
affinity uptake of GABA and glutamate is also differently distributed (Paper IV, Fonnum et al,
1980). Therefore, the glutamatergic and GABAergic nerve terminals seem to differentiate
between glutamate and GABA on three levels, namely the high affinity uptake, the distribution of
glutamate decarboxylase, and the vesicular uptake.

Christensen and Fonnum (1991¢) have found that the ratio between the vesicular uptake of GABA
and glycine is similar in cerebral cortex, subcortical telencephalon, whole brain, and spinal cord.
This is not in agreement with the expected distribution of glycinergic neurons. Glycine is proposed
to be an inhibitory neurotransmitter in the interneurons of spinal cord and in medulla {(Johnston
and Iversen, 1971). The supraspinal distribution of vesicular glycine uptake is probably due to
uptake into non-glycinergic vesicles. The results of Paper V, that the uptake of glycine is
competitively inhibited by GABA and vice versa support the idea that glycine is taken up into non-
glycinergic neurons in supraspinal regions. In addition, the structure analogues GABA, glycine
and B-alanine are taken up into synaptic vesicles isolated from rat brain and rat spinal cord (Paper
V). The high affinity uptake ~f GABA and glycine are different (Balcar and Johnston, 1973). This
means that the plasma membrane of GABAergic terminals transport GABA, and the plasma
membrane of glycinergic terminals transport glycine. The concentration of GABA in GABAergic
terminals has been estimated to be 50-150 mM (Fonnum and Wahlberg, 1973). It is therefore
reasonable to expect a great difference in the concentration between GABA and glycine in
GABAergic neurons and the vesicles will predominantly accumulate GABA. In addition, GABA
has higher affinity f{ur the vesicular transporter than glycine (Paper [; Kish et al,
1989;Christensen et al, 1990). In this way nature seems to be able to cope with the fact that the
specificity cf the vesicular GABA and glycine transporter is similar.

There has been some dispute concerning the results on the specificity of the vesicular GABA and
glycine transporters. As pointed out earlier (discussion of methods), Kish et al (1989) obtained a
low ratio of GABA/glutamate uptake (0.03) and glycine/GABA uptake (0.13), and in an earlier
study they did not find any uptake of GABA at all (Naito and Ueda, 1983). These results indicate
that they have problems with isolating GABAergic vesicles. Therefore, to detect any vesicular
glycine uptake can be difficult due to the lower affinity of the glycine uptake. In addition they did
not find any inhibition of the uptake of GABA by glycine and vice versa. This was probably due to
the different kinetic conditions that was used (Kish et al, 1989). They concluded that the properties
of GABA and glycine uptake are different, and that GABA and glycine are taken up into different
vesicle populations. The specificity of the glycine uptake will be further discussed elsewhere
(Christenczen Dr Scient thesis 1991).

The findings that GABA and glycine can be taken up into the same vesicle population are
interesting, in view of the colocalization of GABA and glycine immunoreactivity in cerebellum
(Ottersen et al, 1988), cochlear nuclei (Wenthold, 1987) and retina (Yazulla and Yang, 1988). It
has also been suggested by Ottersen et al (1990) that GABA and glycine may be released from the
same neuron, at least from the cerebellar Golgi cell terminals.

It should be kept in mind that the uptake of noradrenaline and dopamine in synaptic vesicles
prepared from rat brain is relatively non-specific. Noradrenaline containing vesicles can take up
noradrenaline, dopamine and serotonin. In vesicle fractions from whole brain dopaminergic
vesicles are responsible for a significant portion of the noradrenaline uptake (Slotkin et al, 1978).
It is also shown that the vesicles isolated from corpus striatum exhibited the same ratio of uptake
of dopamine/noradrenaline as did vesicles from cerebral cortex. N-radrenaline also competitively
inhibited the dopamine uptake (Slotkin et al, 1978). In addition, both dopaminergic and
noradrenergic nerve endings in the brain can take up either catecholamine (Snyder et al, 1970),
but the regional distribution of these neurotransmitters in the brain is different, e. g. corpus
striatum contains large quanticies of dopamine with very little noradrenaline (Moore and Bloom,
1978, 1979).
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In general, the vesicular uptake of GABA, glycine and catecholamines is non-specific. This non-
specificity turns out to be a rule rather than an exception in nature. In contrast, the transporter of
the glutamatergic vesicles seems to be specific for glutamate (Paper 1V, Fischer-Bovenkerk, 1988).
The Na® dependent glutamate uptake system in nerve endings does not distinguish between
glutamate and aspartate (Logan and Snyder, 1972, Davies and Johnson, 1976). Aspartate,
suggested to be an excitatory neurotransmitter in a few pathways ir. the central nervous system, is
not taken up into the vesicles (Paper V; Naito and Ueda, 1983). So far investigated, glutamate is
the only neurotransmitter which has a vesicular carrier stimulated by a low concentration of CI". A
glutamate/C] antiport or a glutamate carrier coupled to a Cl channel may be involved in the
uptake of glutamate.

5 CONCLUSIONS

1) The inhibitory neurotransmitter GABA is taken up into mammalian synaptic vesicles (Paper
[). Both the uptake of GABA and glutamate are driven by an electrochemical gradient generated
by a Mg2'-ATPase (Paper II).

2) The uptake of glutamate is stimulated by low concentrations of Cl or Br, while the uptake of
GABA is hardly affected. The uptake of glutamate is more potently inhibited by blockers of anion
exchangers than the uptake of GABA. A possible mechanism for the uptake of glutamate may be a
glutamate/Cl antiport (Paper I11).

3) The specificity of the uptake of GABA and glutamate is different, and the transmitters are
taken up into different populations of synaptic vesicles. The substrate specificity of the uptake of
GABA and glycine is similar, and both are taken up into brain vesicles and spinal cord vesicles in
vitro (Papers IV, V). Thus the vesicular uptake does not differentiate between GABA and glycine
as transmitter candidates in specific terminals.
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Uptake of y-Aminobutyric Acid by a Synaptic Vesicle
Fraction Isolated from Rat Brain

Else M. Fvkse and Frode Fonnum

Division for Environmental Toxicology. Norwegian Defence Research Establishment, Kjeller. Norway

Abstract: y-Aminobutyric acid (GABA) was taken up by a
MgATP-dependent mechanism into synaptic vesicles iso-
lated by hypoosmotic shock and density gradient centrifu-
gation. The properties of the vesicular uptake differed
clearly from those of synaptosomal and glial uptake, both
with respect to Na*, Mg?*, and ATP dependence and with
respect 10 response to general GABA uptake inhibitors such
as nipecotic acid, diaminobutyric acid. and S-alanine. The
uptake showed a K, of 5.6 mAM and a net uptake rate of

1,500 pmol/min/mg of protein. It is suggested that the ve-
sicular uptake of GABA is driven by an electrochemical
proton gradient generated by a Mg>*-ATPase. Key Words:
Synaptic vesicles—Svnaptosomes—y-Aminobutyric
acid—y-Aminobutyric acid uptake. Fykse E. M. and Fon-
num F. Uptake of y-aminobutyric acid by a synaptic vesicle
fraction isolated from rat brain. J. Neurochem. 50,
1237-1242 (1988).

y-Aminobutyric acid (GABA) is probably the
major inhibitory neurotransmitter in the CNS
(Krnjevi¢, 1970; Fonnum, 1978, 1987). It is well es-
tablished that glutamic acid decarboxylase (EC
4.1.1.15), the enzyme that synthesizes GABA, is
highly localized in the nerve terminal, probably in the
cytosol (Salganicoff and De Robertis, 1965; Fonnum,
1968). Attempts to show an enrichment of GABA in
synaptosomes or synaptic vesicles compared with
other subcellular fractions have not been very con-
vincing (De Belleroche and Bradford, 1973; Lahdes-
miki et al.,, 1977; Wood and Kurylo, 1984). In fact, it
was earlier concluded that vesicles do not contain
amino acids in any significant concentration (Man-
gan and Whittaker, 1966; Rassin, 1972; Kontro et al.,
1980). The lack of evidence for an enrichment of
GABA in vesicles has been attributed to the possible
leakage of the amino acids during the subcellular
fractionation procedure.

Recent evidence indicates that L-glutamate is taken
up in an ATP-dependent manner by synaptic vesicles
isolated from bovine brain by antibodies against pro-
tein I (Naito and Ueda, 1983, 1985). This supports
the notion that synaptic vesicles may be involved in

synaptic transmission of amino acids. Naito and
Ueda (1982), however, failed to show uptake of
GABA into the immunoprecipitated synaptic vesicle
fraction. Recently, Orrego et al. (1986) also failed to
show uptake of GABA into a vesicle fraction.

In the present work, we have, therefore, reinvesti-
gated the uptake of GABA into synaptic vesicles iso-
lated from rat brain. We have also compared the ve-
sicular and synaptosomal uptake under different
conditions.

MATERIALS AND METHODS

GABA, ATP (disodium salt), carbonylcvanid-m-chioro-
phenylhydrazone (CCCP), ouabain, L-glutamate (disodium
salt), D-aspartate, diaminobutyric acid (DABA). nipecotic
acid. and g-alanine were purchased from Sigma Chemical
Co. (U.S.A.). Oligomycin was obtained from Serva
(GmbH). [2,3-*H]GABA (71.5 Ci/mmol) was from Amer-
sham (U.K.).

Purification of synaptosomes and synaptic vesicles
Male Wistar rats, weighing 200-250 g, were used in all
experiments. Animals were killed by decapitation, and the
brains were quickly removed. The subcellular fractionation
was carried out according to the original procedure of
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Whittaker et al. (1964}, except that 10 m.M Tris-HCl (pH
7.4)and t O m.f EGTA were included tn the sucrose solu-
tion (Stadler and Tsukita, 1984). The crude synaptosomal
pellet (P;) was osmotically shocked by resuspension in 0.1
mY EGTA and 10 m.M Tris-HC! buffer (pH 7.4) and cen-
trifuged at 17,000 g for 30 min. The remaining supernatant
containing vesicles was subjected to sucrose density gra-
dient centrifugation in a Contron TST 28.38 rotor at
65.000 g for 2 h. and the vesicle fraction (D) was isolated
from 0.4 M sucrose as originally described. In some cases,
the D fraction was diluted with 0.15 W KC1 and recentni-
fuged at 100,000 g for 3 h, and the peliet was used in the
uptake experiments.

A crude synaptosomal pellet (P,) resuspended in 0.25 W
sucrose and 5 mM Tris-HCl (pH 7.4) was subjected to
GABA uptake experiments.

Assay for GABA uptake

GABA uptake was determined essentially as described by
Naito and Ueda (1982, 1985) for vesicular glutamate. The
standard incubation mixture for assaying vesicular and syn-
aptosomal GABA uptake contained 0.25 M sucrose, 5 mM
Tris-HCl (pH 7.4), and 4 mM MgSO,. The standard incu-
bation medium for synaptosomes contained, in addition,
50 mM NaCl. Synaptic vesicles (0.2-0.3 mg of protein) and
synaptosomes (0.05 mg of protein) were preincubated in
275 ul of standard incubation mixture for 15 min at 30°C.
[*HJGABA (final concentration = 44 uM; 0.1 Ci/mmol)
alone or with ATP (final concentration = 2 mM: disodium
salt neutralized with Tris base) was added in 25 ul, and the
mixture was further incubated for 3 min at 30°C. The up-
take, if not otherwise stated, was 1erminated by addition of
5 ml of ice-cold 0.15 M KCl, followed by immediate filtra-
tion through Millipore Hawp filters (diameter = 25 mm;
pore size = 0.45 um). The incubation tubes and filters were
further washed twice with ice-cold 0.15 M KCl solution.
Filters were then dissoived in 10 ml of Filter Count (Pack-
ard), and the radioactivity was determined in a Packard
Tri-Carb 300 liquid scintillation counter with a counting
efficiency of 54-56%. Blanks, treated similarly but incu-
bated at 0°C, were 977 + 20 (n = 37) and 757 = 50 cpm (n
= 15) (mean + SEM) for the vesicular and synaptosomal
system, respectively. GABA concentration, incubation
time, and addition of different metabolic inhibitors had no
significant effect on the biank values. The blank values,
corresponding to 20-30% of the radioactivity, were re-
tained on the filters under standard GABA uptake condi-
tions.

In each ~xperiment, both samples and blanks were as-
sayed in triplicate, and the mean value was used. In some
experiments, the GABA concentration was varied from 44
uM 10 10 mM, and in others, the incubation time was
varied between 90 s and 10 min. When the effect of the
metabolic inhibitors CCCP, oligomycin, and ouabain was
examined, they were inciuded in the preincubation mix-
ture. CCCP and oligomycin were dissolved in absolute eth-
anol. The final concentration of ethanol was ~ 1%, and it
had no significant effect on uptake.

Synaptosomal GABA uptake inhibitors (see Table 3)
were all added to the preincubation medium. The inhibitor
solutions were adjusted to pH 7.4 with NaOH when neces-
sary.

In some experiments, the vesicle fraction was pelleted by
centrifugation at 100,000 g for 3 h, and the peilet was

J Neurochem.. Vol 50, No 4, 1988

treated with trichloracetic acid (2.5%) to release the amino
acids. The supernatant was extracted with ether to remove
trichloracetic acid. then reacted with o-phthaldialdehyde
under slightly alkaline conditions, and subjected to HPLC
as previously described (Lindroth and Mopper, 1979). The
amino acid content was determined by fluorescence. and
the radioactivity was determined by scintillation counting
of 1-mi fractions.

Protein contents in the synaptosome and vesicle prepara-
tions were measured as described by Lowry et al (1951).

Statistics

For uptake studies, the results were expressed as mean
+ SEM values. Groups of data were analyzed by Student’s
test. The Ky and V.. values were calculated with a hinear
regression program (Chou and Chou, 1985).

RESULTS

We have studied the uptake of GABA into a syn-
aptic vesicle fraction. In most experiments, the vesi-
cle fraction (D) was used directly, but in some experni-
ments, a resuspension of the vesicle pellet after cen-
trifugation of the D fraction (diluted with 0.15 M
KCl) at 100,000 g for 3 h was used. The suspension of
the vesicle pellet and the D fraction gave similar re-
sults, but the D fraction usually gave a higher uptake.

The uptake was stimulated four- or fivefold at
30°C compared with 0°C. The vesicular uptake was,
therefore, highly temperature dependent, and uptake
at 0°C was taken as the blank throughout the investi-
gation. When the extract from vesicles was reacted
with o-phthaldiaidehyde and subjected to HPLC, the
radioactivity traveled with the GABA peak.

When the vesicular fraction was diluted and
washed with water instead of 0.15 M KCl, uptake was

TABLE 1. Vesicular uptake of {*H|GABA

GABA uptake
pmol/min/mg
Treatment of protein %
Control 9.1 +1.2(8 100
Minus ATP 1.6 £06(5) 16
Minus Mg 4.8 £ 098y 53
Plus 5 uM CCCP 3.6+0703° 40
Plus 10 M CCCP 314 +08(4P 37
Plus 50 mM Na* 84+ 08(6) 92
Plus 2.5 ug of oligomycin 76209(5 84
Plus 167 uM ouabain 83+06(6) 9

A soluble vesicle fraction (D fraction) or a vesicle pellet was
incubated in 0.25 M sucrose. 5 mM Tris-HQl (pH 7.4). 4 mM
MgSO,., 2 mM ATP. and 44 uM [’HIGABA (0.1 Ci/mmol) for 3
min at 30°C. The amount of GABA retained in the vesicles was
determined as described in Materials and Methods. Data are mean
+ SEM values (no. of determinations).

*p < 0.001, °p < 0.05 by Student’s 7 test.
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reduced by 80%. Under such conditions. the vesicles
were osmotically shocked, and accumulated GABA.
therefore, leaked out. This confirms that we are deal-
ing with uptake into osmotically sensitive particles
rather than with membrane binding.

The uptake was highly dependent on ATP (Table
1). In the absence of ATP, uptake was reduced by
84%. The uptake was also dependent on Mg™. an
observation indicating the involvement of a Mg~"-
ATPase. In the presence of small concentrations of
the proton carrier CCCP, the ATP-dependent uptake
of GABA was inhibited. This indicates the impor-
tance of the electrochemical gradient generated by a
proton pump ATPase in the synaptic vesicle mem-
branes.

Oligomycin and ouabain had no significant effect
on ATP-dependent GABA uptake (Table 1). These
agents are known to inhibit the mitochondrial and
plasma membrane Na* K*-ATPases. respectively.
This confirms that mitochondrial and plasma mem-
brane ATPases were not involved in the GABA up-
take described.

The uptake of GABA into the vesicular fraction
was compared with that into the synaptosome frac-
tion (Table 2). Unlike vesicular uptake, synapto-
somal uptake of GABA was highly stimulated by ad-
dition of 50 mAM NaCl (almost 15-fold). The uptake
of GABA into synaptosomes was not reduced by re-
moval of Mg** or ATP, but it was inhibited by CCCP.

The time course of ATP-dependent GABA uptake
up 10 10 min is shown in Fig. 1. Maximal uptake was
reached after ~5 min of incubation.

The vesicular GABA accumulation in the presence
of ATP was saturable with respect to GABA (Fig.
2A). The K., value for GABA in the presence of ATP
was determined to be 5.6 mM, and the Vp,, value was
1.500 pmol/min/mg of protein (Fig. 2B).

As shown in Table 3, the uptake of GABA into

TABLE 2. Accumulation of [’H]GABA by a crude

synaptosomal fraction
GABA uptake
pmol/min/mg
Treatment of protein %
Control 98.1£7.5 100
Minus ATP 990+ 3.9 101
Minus Mg** 195.2 £ 27.5* 199
Plus 10 uM CCCP 340+4.2° 34
Minus 50 mM Na*® 6.8+27 7

A crude synaptosomal pellet {P;) dissolved in 0.25 M sucrose and
5 mM Tris-HCl (pH 7.4) was incubated with 4 mM MgSQ,, 50
mM NaCl. 2 mM ATP, and 44 uM [*H]GABA (0.1 Ci/mmol) for 3
min at 30°C. The amount of GABA retained in the synaptosomes
was determined as described in Materials and Methods. Data are
mean = SEM values from three determinations.

°p < 0.05. °p < 0.001 by Student’s ¢ test.

15+

{*H]).GABA UPTAKE (pmolimg)

5

TIME (min)

FIG. 1. Time course of [H]GABA uptake by synaptic vesicles.
Synaptic vesicies (D fraction) were incubated in 0.25 M sucrose. 5
mM Tris-HCI (pH 7.4), 4 mM MgSO,, 2 mM ATP, ana 44 .M
[PHIGABA (0.1 Ci/mmoi) at 30°C for various times. Each point is
the average of three or four separate experiments. and the
amount of GABA accumuilated in the vesicies was determined as
described in Materials and Methods. The bars indicate SEM.

synaptic vesicles was not inhibited by general, synap-
tosomal, and glial GABA uptake inhibitors such as
nipecotic acid. DABA, or S-alanine, Uptake was not
inhibited by L-glutamate or D-aspartate.

DISCUSSION

In the present study, we provide evidence for a
MgATP-dependent uptake system for GABA into
synaptic vesicles isolated from rat brain. Accumula-
tion of GABA by synaptic vesicles was highly depen-
dent on temperature. The vesicular system was satu-
rable with respect to time and substrate concentra-
tion. Compared with synaptosomal GABA uptake.
the affinity and maximal rate were low. Vesicular
uptake was inhibited by the proton carrier CCCP, but
it was not inhibited by ouabain and oligomycin. Un-
like uptake into synaptosomes, vesicular uptake was
independent of NaCl and was not inhibited bv
DABA, g-alanine, or nipecotic acid. GABA accumu-
lated in synaptic vesicles was released under hypoos-
motic conditions. Thus, the radioactive GABA re-
tained on the filters was due to uptake rather than
binding.

Previously, Naito and Ueda (1983) failed to show
any uptake of GABA into immunoprecipitated vesi-
cles. In this preparation, they were only able to show
accumulation of glutamate. However, recently, in a
preliminary report, they described an ATP-depen-
dent uptake of GABA into synaptic vesicles prepared
by Percoll gradient centrifugation (Kish et ai.. 1987).
In the present work, we also provide evidence for a

J Neurochem.. Voi. 50. No. 4 1988
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FIG. 2. Substrate dependence of [*H]GABA accumulation by
synaptic vesicles. A: Rate of ATP-dependent vesicular uptake of
*H]GABA as a function of GABA concsntration. Synaptic vesicles
{D fraction) were incubated in 0.25 M sucrose, 5 mM Tris-HC! (pH
7 4), 4 mM MgSO,, and 2 mM ATP The GABA concentration was
vaned between 500 uM and 10 mM, and the amount of GABA
retained in the vesicies after 3 min at 30°C was determined as
described in Materiais and Methods. Each point represents spe-
cific GABA uptake (the average of three separate experiments);
bars indicate SEM. 8: Oouble reciprocal piot of the data from A.
The Km (5.6 MM) and Ve (1,500 pmoi/min/mg of protein) vaiues
were calculated with a iinear regression program (Chou and Chou,
1985).

specific vesicular GABA uptake system. There has
not yet been any satisfactory evidence for localization
of GABA in synaptic vesicles, and the mechanism of
storage and release into the synaptic cleft is not clear
{De Belleroche and Bradford, 1973; Lahdesmiki et
al., 1977). The present results indicate the storage of
GABA in synaptic vesicles and, therefore, the possi-
ble invoivement of synaptic vesicles in GABAergic
synaptic transmission. QOther criteria need to be ful-
filled before this can be firmly established.

J Neurochem . Vil 50. No 4. 1988

Accumulation of GABA by synaptic vesicles iso-
lated from rat brain required ATP hydrolysis and
Mg**. These results are similar to the results of Naito
and Ueda (1983, 1985) on glutamate uptake. Their
uptake system has been reported to be highly specific
for L-glutamate and driven by a vesicle Mg "-ATP-
ase, generating an electrochemical proton gradient.
We have demonstrated that accumulation of GABA
by synaptic vesicles from rat brain was significantly
decreased in the absence of ATP and Mg”* and in the
presence of CCCP, an inhibitor of proton pumps and
an uncoupler of oxidative phosphorylation (Heytler
and Prichard, 1962). In contrast, oligomycin. a well-
known inhibitor of mitochondrial ATPase, did not
affect uptake. This indicates that mitochondrial
membranes could not be responsible for the vesicular
uptake. Quabain, an agent known to inhibit plasma
membrane Na*,K*-ATPase and synaptosomal
GABA uptake (Nicklias et al., 1973), had no effect on
the ATP-dependent vesicular uptake. Because mam-
malian synaptic vesicles contain an ATP-dependent
proton pump (Stadler and Tsukita, 1984), we pre-
sume that GABA uptake is driven by a vesicle Mg™*-
ATPase, generating an electrochemical proton gra-
dient.

Using synaptic vesicles from the electric organ of
Torpedo. it has been shown that acetylcholine is also
taken up in a saturable MgATP-dependent manner
(Koenigsberger and Parsons, 1980; Parsons and
Koenigsberger, 1980; Anderson et al., 1982 Parsons
et al., 1982). Uncouplers like nigericin, valinomycin,
and carbonylcyanid p-trifluoromethoxyphenylhydra-
zone act as potent inhibitors of active acetyicholine
uptake. Synaptic vesicles isolated from the rat brain
also accumulate {*H]noradrenaline and 5-[*H}-
hydroxvtryptamine (Seidler et al., 1977 Halaris and
DeMet, 1978) in a MgATP-dependent manner.

TABLE 3. Effects of aruno acids and synaptosomal
GABA uptake inhibitors on vesicular uptake of [*H)GABA

GABA uptake
(pmol/min/mg of
Test agent protein)

None (control) 1112205
g-Ala (10 mM) 9.220.8(3)
L-Glu (10 mM) 1432173
D-Asp (10 mM) 1342200
DABA (1 mM) 1332220
Nipecotic acid (1 mM) 10.7 2 £.7(3)

A soluble vesicle fraction (D fraction) was incubated in 0.25
sucrose, S mM Tris-HCl (pH 7.4). 4 my MgSO,. 2 mM ATP. and
44 uM [°HJGABA (0.1 Ci/mmotl). The test agents were included in
the preincubati di The of GABA acc lated by
the vesicles was determined as described in Matenals and Methods.
Data are mean = SEM values (no. of determinations). The values
are not significantty different from the control (Student’s 7 test).
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These reports agree with our results. Accumulation of
neurotransmitters by isolated synaptic vesicles is an
active process, probably driven by an electrochemical
gradient.

The Ky value determined (5.6 m.Y/) indicates a

low-affinity system for GABA uptake into synaptic-

vesicles. Naito and Ueda (1985) also found a low-af-
finity K, value for glutamate uptake (1.6 mM) into
synaptic vesicles. The concentration of GABA in the
GABAergic terminals has been estimated to be
50-150 mM (Fonnum and Walberg, 1973). A large
part of this pool is probably intravesicular, and the
concentration in the cytosol may, therefore. be of the
same order of magnitude as the K, of the vesicular
uptake. In contrast, Seidler et al. (1977) described a
higher affinity for uptake of catecholamine into syn-
aptic vesicies isolated from rat brain.

The described vesicular uptake of GABA differs
clearly from that of synaptosomal uptake of GABA
with respect to dependence on Na” (Martin and
Smith, 1972; Kanner. 1978) and ATP (Kanner,
1978).

CCCP, the electrogenic proton carrier, inhibited
both the vesicular and the synaptosomal transport
systems. The synaptosomal uptake of GABA requires
both Na” and CI™ gradients, which are electrogeni-
cally maintained (Kanner and Radian, 1986). In the
case of synaptosomes, CCCP will. therefore, inhibit
the uptake by decreasing the membrane potential
(Kanner, 1978).

It is particularly interesting that 3-alanine. DABA.
and nipecotic acid had no effect on GABA uptake
into vesicles. It is well established that DABA and
3-alanine are potent inhibitors of synaptosomal and
glial uptake, respectively, and that nipecotic acid in-
hibits both (Iversen and Kelly, 1975; Krogsgaard-
Larsen and Johnston, 1975; Schon and Kelly, 1975).

In conclusion, the vesicular uptake of GABA is
driven by a Mg?*-ATPase coupled 1o an electrogenic
pump. The vesicular uptake system is clearly differ-
ent from those of glia and synaptosomes.
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